

TAVR & Antithrombotics Antiplatelets Only Not Sufficient: Still room for NOAC

JEAN-PHILIPPE COLLET

Sorbonne Université, Action Study Group (www.action-coeur.org)
Institut de Cardiologie - Groupe Hospitalier Pitié-Salpêtrière (APHP)
Paris, France

Prof. Collet reports receiving research grants from Bristol Myers Squibb, Medtronic and lecture fees from Bristol Myers Squibb, Bayer, AstraZeneca, Metronic.

Valve thrombosis

ETIOLOGY OF THROMBOEMBOLIC EVENTS AFTER TAVI

Antiplatelet Hypothesis

To obviate stent-mediated risk of plateletrelated thrombosis/embolization

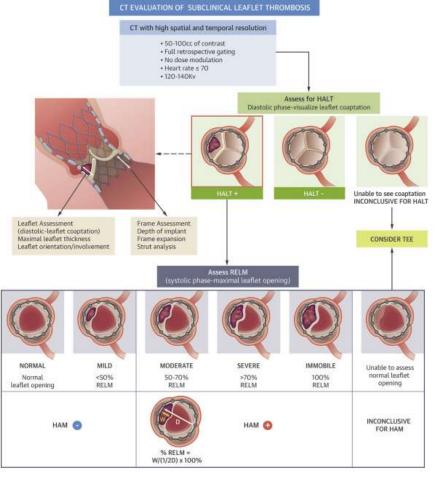
=> Use of DAPT

Antithrombin Hypothesis

To prevent thrombin-based thrombus formation during the first 3 months after implantation

=> Use of OAC

A clearer mechanistic understanding of the pathobiology of thromboembolic events during and after TAVI will provide a translatable foundation for optimal therapies

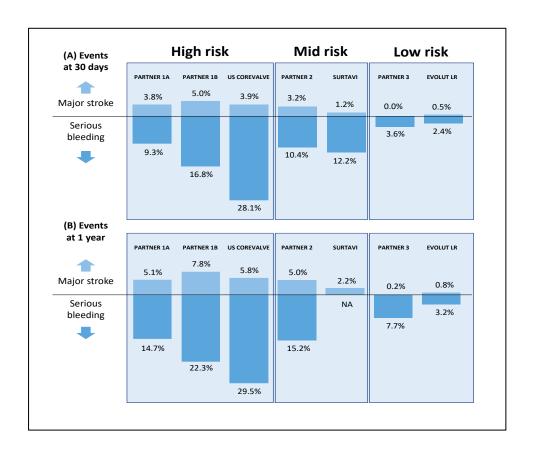


Clinical and subclinical leaflet thrombosis

- Implanted valve adds a prothrombotic environment, which may favour subclinical thrombosis
- TAVI is associated with leaflet thickening affecting valve function hypo-attenuated leaflet thickening (HALT)
- >50% motion reduction → hypo-attenuation affecting motion (HAM)
- May compromise implant durability, may increases risk of thromboembolism, stroke and TIAs
- Subclinical leaflet thrombosis is an incidental finding → clinically-significant valvular dysfunction or MACCE?

Independent correlates

N=2555	m=20	Adj. OR	95% CI	95% CI
	P-value		upper	lower
вмі	0.002	1.05	1.02	1.09
Prior TAVI	0.025	2.96	1.15	7.64
Moderate/severe renal failure	0.034	1.46	1.03	2.08
Non-femoral access	0.049	0.53	0.28	1.02
Prosthesis ≤23 mm	<0.001	3.43	2.41	4.89
OAC at discharge	0.005	0.54	0.35	0.82



Thrombotic and bleeding events in the TAVI population

TRADE-OFF

DETERMINANTS OF ANTITHROMBOTIC THERAPY

- 1/3→ SCAD or stent PCI
- 1/3 → Secondary prevention for stroke
- 2/5 → Permanent AF or NOAF

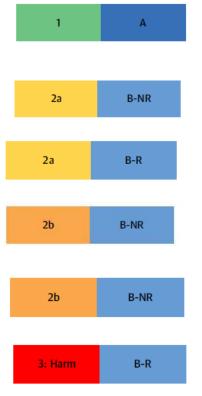
- 30%→ Antiplatelet Therapy alone
- 50% → Oral Anticoagulation alone
- 25% \rightarrow OAC + APT

Periprocedural management of TAVI

- TAVI is a minimally-invasive alternative for patients with aortic stenosis who need a valve replacement¹
- 30% of patients undergoing TAVI have a history of atrial fibrillation (AF) and an additional 10% develop AF after TAVI²
- AF may have an independent impact on mortality in TAVI³
- Treating AF with anticoagulation is a balance between risk of bleeding and risk of thrombosis⁴

Guidelines

Management of antithrombotics in patients with TAVI

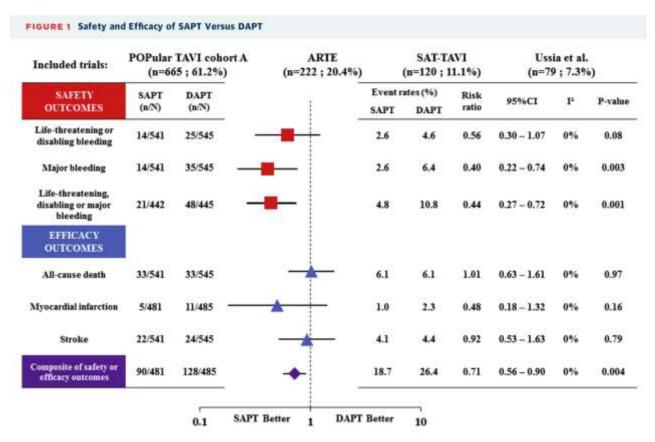

2017 ESC/EACTS Guidelines for the management of valvular heart disease

	Class	Level
Anticoagulation		
DAPT should be considered for the first 3–6 months after TAVI, followed by lifelong SAPT in patients who do not need OAC for other reasons	lla	U
SAPT may be considered after TAVI in the case of high bleeding risk	IIb	С
OAC may be considered for the first 3 months after surgical implantation of an aortic bioprosthesis	IIb	С
NOACs should be considered as alternative to VKAs after the third month of implantation in patients who have AF associated with a SAVR or TAVI	lla	С

Management of antithrombotics in patients with TAVI

2020 ACC/AHA Guideline for the Management of Patients With

- For patients with AF and native valve heart disease (except rheumatic mitral stenosis [MS]) or who
 received a bioprosthetic valve >3 months ago, a non-vitamin K oral anticoagulant (NOAC) is an effective
 alternative to VKA anticoagulation and should be administered on the basis of the patient's CHA₂DS₂VASc score (17,18).
- 3. For patients with new-onset AF \leq 3 months after surgical or transcatheter bioprosthetic valve replacement, anticoagulation with a VKA is reasonable (19-22).
- 5. For patients with a bioprosthetic TAVI, aspirin 75 to 100 mg daily is reasonable in the absence of other indications for oral anticoagulants (426-428).
- 10. For patients with a bioprosthetic TAVI who are at low risk of bleeding, dual-antiplatelet therapy with aspirin 75 to 100 mg and clopidogrel 75 mg may be reasonable for 3 to 6 months after valve implantation (426,427,443).
 - 11. For patients with a bioprosthetic TAVI who are at low risk of bleeding, anticoagulation with a VKA to achieve an INR of 2.5 may be reasonable for at least 3 months after valve implantation (437, 445-447).
 - 12. For patients with bioprosthetic TAVI, treatment with low-dose rivaroxaban (10 mg daily) plus aspirin (75-100 mg) is contraindicated in the absence of other indications for oral anticoagulants (444).

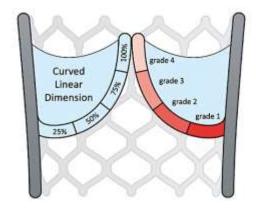


No indication for oral anticoagulation

CLINICAL TRIALS

POPULAR TAVI: COHORT A

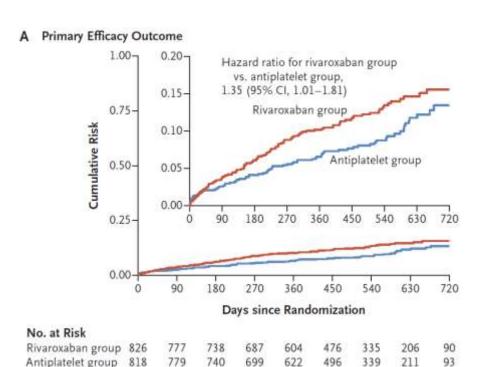
POPULAR TAVI – no OAC cohort


	Aspirin (N=331)	Aspirin + clopidogrel (N=334)	RISK RATIO (95% CI)
Death, n (%)			
Death from any cause	21 (6.3)	19 (5.7)	1.12 (0.61 to 2.04)
Death from cardiovascular causes	14 (4.2)	13 (3.9)	1.09 (0.52 to 2.28)
Stroke, n (%)			
Ischemic	17 (5.1)	18 (5.4)	0.95 (0.5 to 1.82)
Hemorrhagic	0	1 (0.3)	
Myocardial infarction, n (%)	4 (1.2)	6 (1.8)	0.67 (0.19 to 2.36)
Bleeding, n (%)			
Major, life-threatening, or disabling	17 (5.1)	36 (10.8)	0.48 (0.27 to 0.83)
Minor	33 (10.0)	53 (15.9)	0.63 (0.42 to 0.94)

Valve Thrombosis – 4DCT analysis

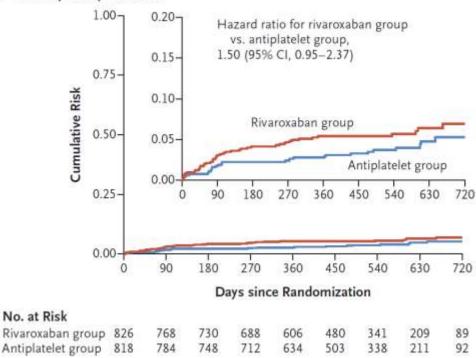
- > Reduced leaflet motion (RLM) was defined as:
 - Grade 0: normal/unrestricted
 - Grade 1: minimally restricted (<25%)
 - Grade 2: mildly restricted (25-50%)
 - Grade 3: moderately restricted (50-75%)
 - **Grade 4**: largely immobile (>75%)

Blanke P, et al. JACC Cardiovasc Imaging. 2019;12:1-24.



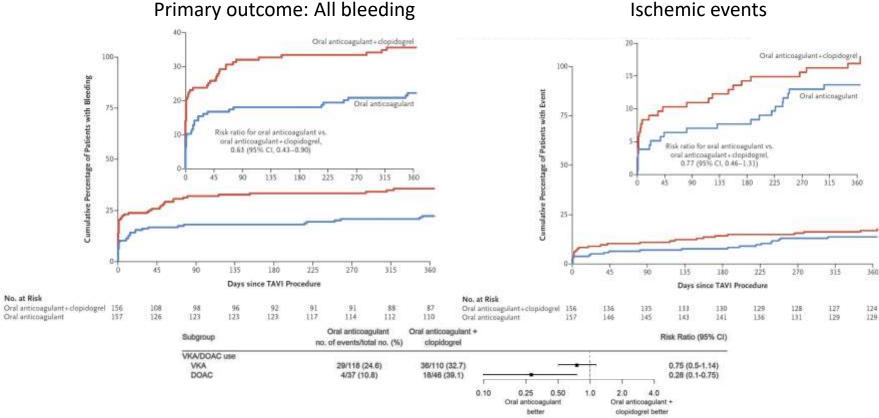

Redu	ced leaflet motion (RL	M)		
Analysis at patient level	Rivaroxaban (N=97)	Antiplatelet (N=101)	Δproportions (95%CI)	_
At least one leaflet with RLM grade ≥ 3	2.1%	10.9%	-8.8% (-16.5 to - 1.9%)	— Primary endpoint
Analysis at leaflet level	Rivaroxaban (N=291)	Antiplatelet (N=303)	Δproportions (95%CI)	
Number of leaflets with RLM grade ≥ 3	1.0%	4.6%	-3.6% (-6.7 to -0.9%)	

The GALILEO Study



The GALILEO Study

C Primary Safety Outcome



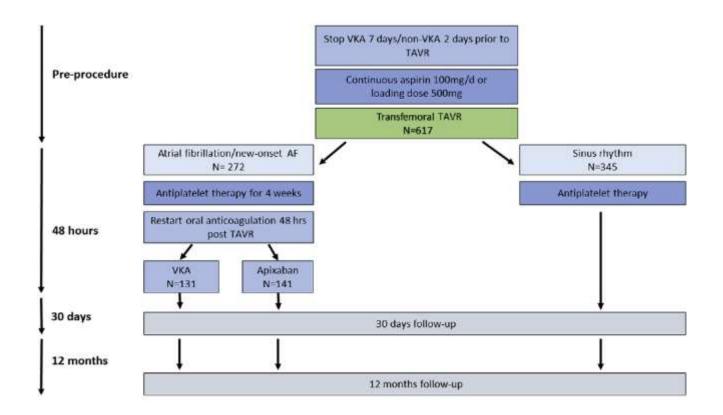
Indication for oral anticoagulation

PPULAR TAVI: COHORT B

POPULAR TAVI (NCT02247128)

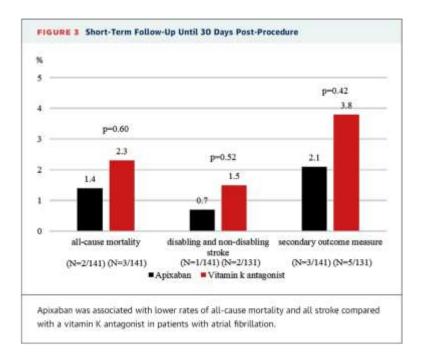
POPULAR TAVI: COHORT B

Secondary outcome



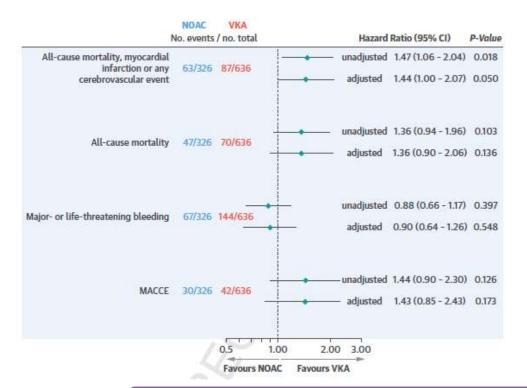
	OAC (N=157)	OAC + CLOPIDOGREL (N=156)	RISK RATIO (95% CI)
Death, n (%)			
Death from any cause	21 (13.4)	24 (15.4)	0.87 (0.51 to 1.50)
Death from cardiovascular causes	13 (8.3)	20 (12.8)	0.65 (0.33 to 1.25)
Stroke, n (%)			
Ischemic	8 (5.1)	9 (5.8)	0.88 (0.35 to 2.23)
Hemorrhagic	1 (0.6)	0	
Myocardial infarction, n (%)	1 (0.6)	1 (0.6)	0.99 (0.06 to 15.75)
Bleeding, n (%)			
Major, life-threatening, or disabling	14 (8.9)	26 (16.7)	0.54 (0.29 to 0.99)
Minor	20 (12.7)	28 (17.9)	0.71 (0.42 to 1.21)

Apixaban in AF after TAVR



Apixaban in AF after TAVR

	Apixaban (n = 81)	Vitamin K Antagonist (n = 50)	p Value
MACE	27.2 (22)	18.0 (9)	0.34
All-cause mortality	23.4 (19)	12.0 (6)	0.18
Disabling and nondisabling stroke	1.2 (1)	2.0 (1)	0.73
Rehospitalization	15.7 (14)	16.0 (8)	0.87
Secondary outcome measure*	24.7 (20)	14 (7)	0.23


Study limitations

- · not a randomized controlled trial,
- First comparison between VKA and apixaban
- · all the drawbacks of a registry,
- · Larger randomized controlled trials are

Observational registry study of NOAC use in TAVI conducted in four European centers

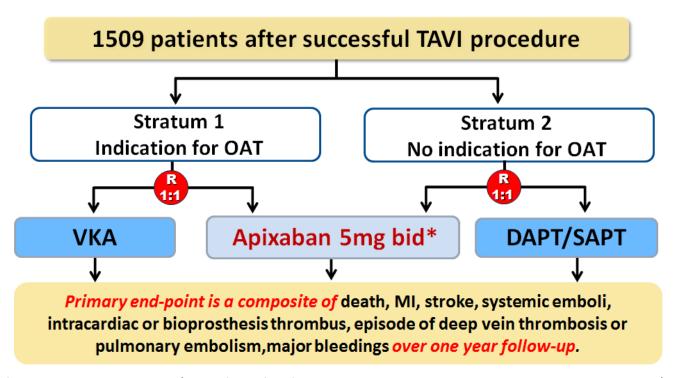
Of the 326 patients discharged with NOAC therapy:

- 175 (53.7%) received rivaroxaban
- 128 (39.2%) received apixaban
- 23 (7.1%) were on dabigatran therapy

Study limitations

- Hypothesis-generating study in a non-randomizedcontrolled setting
- Lack of a centralized event adjudication
- Drug usage compliance and dosage was not assessed
- The timing of initiation and type of OAC treatment was done according to local regulations
- Lack of systematic computer tomography at follow-up (limiting ability to investigate rate of subclinical BVT)
- Lack of information about mitral valve disease

The higher ischemic event rate observed with NOACs needs to be evaluated in large randomized trials


ATLANTIS

ATLANTIS (<u>A</u>nti-<u>T</u>hrombotic Strategy to <u>L</u>ower <u>A</u>ll cardiovascular and <u>N</u>eurologic

Ischemic and Hemorrhagic Events after <u>Trans-Aortic Valve Implantation for Aortic Stenosis</u>)

^{*2.5}mg bid if creatinine clearance 15–29 mL/min or if two of the following criteria: age ≥80 years, weight ≤60kg or creatinine ≥1.5mg/dL (133µMol/L).

The 2.5mg bid dose was also given to patients without these criteria but who require concomitant antiplatelet therapy due to recent stenting/ACS or if long-term SAPT is being maintained after randomization due to physician's choice.

CONCLUSIONS

- The valve adds a prothrombotic environment
- Bleeding is the predominant event
- AF and NOAF are strong determinants of CVE
- SAPT → default therapy if no need for OAC
- NAOC > SAPT for the prevention of subclinical valve thrombosis
- No need for antiplatelet therapy on top of OAC
- Whether NOAC should be the standard of care remains to be evaluated

Thank you

